Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam@nitk.edu.in

https://sam.nitk.ac.in/

MA111 - Engineering Mathematics - II Problem Sheet - 1

Sequences

1. Find the limit of the following sequences whose *n*th term is given by the formula (i) $\frac{(-1)^n}{n+1}$ (ii) $\frac{2n}{3n^2+1}$ (iii) $\frac{2n^2+3}{3n^2+1}$

(**Ans**: (i) 0, (ii) 0, (iii) 2/3).

- 2. Show that the sequences given in question 1 converges to the corresponding limits by ϵN definition.
- 3. Discuss the convergence of the sequence (a_n) defined recursively by (i) $a_1 = 1$, $a_{n+1} = 2 3a_n$, n = 1, 2, ... (ii) $a_1 = 1$ and $a_{n+1} = \frac{a_n}{1+a_n}$, n = 1, 2, ...

(Ans: (i) divergent (ii) convergent)

- 4. Let $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$, n = 1, 2, ... Show that (a_n) is decreasing and bounded below by $\sqrt{2}$.
- 5. Find the limit of the sequence

$$\left\{\sqrt{2},\sqrt{2\sqrt{2}},\sqrt{2\sqrt{2\sqrt{2}}},\dots\right\}$$

Ans: 2.

6. Find the limit of (i)
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 (ii) $a_n = \left(\frac{3n+1}{3n-1}\right)^{1/n}$.

(**Ans**: (i) e, (ii) $e^{2/3}$).

- 7. For any real number *x*, show that $\left(\frac{x^n}{n!}\right)$ converges.
- 8. Show that $\left(\frac{\log n}{n^c}\right) \to 0$ for any c > 0.
- 9. Give an example of a continuous function f(x) and a sequence (a_n) such that $f(a_n)$ converges but (a_n) diverges.
- 10. Discuss the convergence of (i) $\frac{\sin^2 n}{2n}$ (ii) $\frac{n!}{2^n 3^n}$ (iii) $\frac{n!}{n^n}$ (iv) $n^{1/n}$ (v) $\sqrt{n} - \sqrt{n+1}$.

(Ans: (ii) divergent. (i),(ii),(iv),(v) convergent.)

- 11. Give an example of a sequence (a_n) of positive numbers which converges but the sequence (b_n) diverges where $b_n = \frac{a_{n+1}}{a_n}$.
- 12. Prove that if $\{a_n\}$ is a convergent sequence, then to every positive number ϵ there corresponds an integer *N* such that for all *m* and *n*, *m* > *N* and *n* > *N* $\Rightarrow |a_m a_n| < \epsilon$.
- 13. Let $a_1 = a, a_2 = f(a_1), a_3 = f(a_2) = f(f(a)), ..., a_{n+1} = f(a_n)$, where *f* is a continuous function. If $\lim_{n\to\infty} a_n = L$, show that f(L) = L.
- 14. Prove that if a sequence (a_n) converges to a limit *L*, then every subsequence of (a_n) also converges to *L*.
- 15. For a sequence (a_n) the terms of even index are denoted by a_{2k} and the terms of odd index by a_{2k-1} . Prove that if $a_{2k} \to L$ and $a_{2k-1} \to L$, then $a_n \to L$.
- 16. Define the sequences $\{a_n\}$ and $\{b_n\}$ as follows:

$$0 < b_1 < a_1, a_{n+1} = \frac{a_n + b_n}{2}$$
 and $b_{n+1} = \sqrt{a_n b_n}$ for $n \in \mathbb{N}$.

Show that $\{a_n\}$ and $\{b_n\}$ both tend to the same limit. This limit is called the arithmetic-geometric mean of a_1 and b_1 .

- 17. Let the sequence (a_n) be defined by $a_n = \lim_{n \to \infty} \frac{[x] + [2x] + ... + [nx]}{n^2}$, where *x* is a real number. Is this sequence convergent? If so, what is the limit? (Ans: x/2)
- 18. Show that the sequence $\{(1+1/n)^n\}$ is a monotone increasing sequence, bounded above.
- 19. Let $\{b_n\}$ be a bounded sequence which satisfies the condition $b_{n+1} \ge b_n \frac{1}{2^n}$, $n \in \mathbb{N}$. Show that the sequence $\{b_n\}$ is convergent.
- 20. For c > 2, the sequence $\{p_n\}$ is defined recursively by $p_1 = c^2$, $p_{n+1} = (p_n c)^2$, n > 1. Show that the sequence (p_n) strictly increases.

[Hint. By induction, first prove that $p_n > 2c$.]
